图2. 最初反应设想的探索(图片来源:Chem)反应以二氢异噁唑啉衍生物1a作为三氟甲基自由基的接受体,当使用[Ir(ppy)2(dtbbpy)](PF6) (E1/2ox= +1.05 V vs SCE)作为光催化剂,蓝灯光照3小时可以以核磁收率5%得到开环产物3a,产物3a以单一的非对映体形式形成,这说明了新形成的三级碳的立体构型是受相邻立体中心的控制。随后通过系统的条件筛选发现以[Ir(dF(CF3)ppy)2(4,4′-dCF3bpy)]PF6(E1/2ox= +1.65 V vs SCE)作为催化剂,可以得到87%的产物3a。添加水有利于反应结果,这可能是水有助于提高2a的溶解度。控制实验表明,光照射和光催化剂的存在对于这种转化的成功至关重要(图3)。
图4. 实验底物范围的探索(图片来源:Chem)自由基加成诱导的β-断裂和后续的远程C-H功能化的研究在做完上述反应的研究之后,作者试想是否有可能利用新生的以氮为中心的自由基进行进一步的反应研究,这样就可以实现远程的双官能团化反应,这样的例子在文献当中极少报道。当使用PhSO2SCF3作为自由基接受体,在相同的光氧化还原催化环境下,以二氢4-异噁唑啉衍生物4m作为模板底物,该反应可以以高产率得到三氟甲硫基磺化产物5m。光催化剂筛选表明,2CzIPN(E1/2ox= +1.36 V vs SCE)做反应体系的光催化剂时,反应可以在30分钟内以82%的分离产率得到所需的产物,同时进一步的控制实验证明了光催化剂在该反应中的必要性(图5)。