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Generation of acoustic self-bending and bottle
beams by phase engineering
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Directing acoustic waves along curved paths is critical for applications such as ultrasound

imaging, surgery and acoustic cloaking. Metamaterials can direct waves by spatially varying

the material properties through which the wave propagates. However, this approach is not

always feasible, particularly for acoustic applications. Here we demonstrate the generation of

acoustic bottle beams in homogeneous space without using metamaterials. Instead, the

sound energy flows through a three-dimensional curved shell in air leaving a close-to-zero

pressure region in the middle, exhibiting the capability of circumventing obstacles. By

designing the initial phase, we develop a general recipe for creating self-bending wave

packets, which can set acoustic beams propagating along arbitrary prescribed convex

trajectories. The measured acoustic pulling force experienced by a rigid ball placed inside

such a beam confirms the pressure field of the bottle. The demonstrated acoustic bottle and

self-bending beams have potential applications in medical ultrasound imaging, therapeutic

ultrasound, as well as acoustic levitations and isolations.
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A
s is well known, an acoustic beam tends to propagate
along a straight line and suffers broadening from
diffraction in a homogeneous medium. To route acoustic

waves along a curved trajectory, metamaterial-based trans-
formation acoustics tailors the properties of the acoustic media
along the trajectory of propagation, akin to the transformation
optics that twists and transforms the Cartesian coordinates of
electromagnetic fields1–4. Acoustic metamaterials consisting of
sub-wavelength unit cells enable unprecedented material
properties including negative density, negative modulus, as well
as extreme anisotropy5–10, and more importantly, offer an extra-
ordinary bending power over sound waves to realize acoustic
cloaking devices11–14 and super-resolution acoustic imaging15–17.
However, such a control based on spatially varying material
properties could be largely limited or even inhibit important
applications which do not allow invasions, for example, imaging
or energy delivery into a three-dimensional living biological entity
behind another sensitive organ. Finding a way to bend the
wave field without engineering the medium is therefore highly
desirable.

Here we design and synthesize acoustic beams that are capable
of directing sound energy along curved paths and circumventing
obstacles in an otherwise homogeneous media. Without loss of
generality, we demonstrate a bottle-shaped acoustic beam (Fig. 1),
where the sound energy flows through a three-dimensional
curved shell leaving a null-pressure region in the middle. The
construction of such acoustic bottles relies on a general recipe
developed here, which can route acoustic beams along arbitrary
convex trajectories. Moreover, we show that the wall of the
acoustic bottle exerts a pulling force on a rigid object placed
inside, demonstrating its ability for acoustic trapping. The
developed beam design methodology can be readily applied to
other frequency regimes in different media, leading to potential
applications in medical imaging18, therapeutic ultrasound19,
acoustic levitations and manipulations20,21, as well as nonlinear
and pulsed acoustics22.

Results
Self-bending acoustic beam. To produce the acoustic bottle
depicted in Fig. 1, we first develop a general recipe for self-
bending acoustic beams that propagate along any prescribed
arbitrary convex trajectories in a two-dimensional setting,
followed by the introduction of an axial symmetry to construct
the acoustic bottle beams in three dimensions. In general,
self-bending beams represent exact solutions of the wave
equation23–25. In a lossless and source-free homogeneous
medium, the pressure p of a time-harmonic acoustic wave
obeys the Helmholtz equation r2pþ k2p¼ 0, where r2 is the
Laplace operator, and k is the wave number. Considering a two-
dimensional case, the acoustic self-bending beams propagating
along any given convex trajectory x¼ f(z) can be found by solving
the Helmholtz equation asymptotically26. Such self-bending
waves can be understood as a caustic wave phenomenon, where
a family of delicately arranged tilted rays coalesces onto a curved
trajectory upon propagating, leaving a uniform and concentrated
non-diffracting beam. Tracing each individual caustic ray allows
us to measure the phase retardation and construct a specific
wavefront at the acoustic source plane, which produces a self-
bending beam (see Methods). By such a design methodology
along with axial symmetry, the three-dimensional acoustic
bottle beams can be realized. Recently, wave packets with self-
bending ability have been demonstrated with laser and electron
beams27–29, which has inspired a variety of applications including
generating curved plasma channels30, synthesizing linear light
bullets31 and guiding microparticles32. Here, we create for the
first time the self-bending acoustic beams and acoustic bottles.
The self-bending acoustic wave packets identified here are
able to propagate along curved trajectories in a homogeneous
medium, similar to the ballistic motion of the projectile under the
action of gravity.

We synthesize an acoustic beam propagating along a free-form
Bézier curve in air33 by employing a planar speaker array34, as
shown in Fig. 2. A cubic Bézier curve is a parametric curve that
can be scaled indefinitely, and in the meantime the smooth
trajectory is prescribed by four control coordinates that are
arbitrarily chosen (purple circles in Fig. 2a). The wavefront (blue
curves) for generating the cubic Bézier self-bending beam, as
shown in Fig. 2a, can be obtained by following the acoustic rays to
the source plane (see Methods). In our experiment, we launch the
desired self-bending sound beams by precisely adjusting the
phase retardation of a linear array of 40 speakers operating at a
frequency of 10 kHz (1.5 cm in diameter with 2.5 cm spacing). As
such, the phase profile of a prescribed beam can be directly
imprinted onto the emitted sound waves by addressing the phase
of each individual speaker. The produced acoustic field is then
scanned by an acoustic transducer. Figure 2b displays a self-
bending acoustic beam with an asymmetric transverse beam
profile (Fig. 2c), which indeed follows the designed Bézier curve
and is able to circumvent obstacles. It is also observed that the
diffraction of the self-bending beam is largely suppressed in
comparison with a Gaussian beam of similar beam size (see
Methods). Moreover, due to its caustic nature, such a self-bending
acoustic wave packet is extremely robust against perturbations. It
even reconstructs its beam structure after encountering obstacles
during propagation. To demonstrate the self-reconstructing
behaviour of the self-bending acoustic beam, we inserted a steel
rod as an obstacle with a diameter of 3.75 cm (grey disk in Fig. 3)
into the beam path to block the main lobe of the beam. The
corresponding numerical simulation (Fig. 3a) and the
experimental result (Fig. 3b) clearly indicate that the self-
bending acoustic beam indeed can restore the beam structure
after the main lobe is blocked. Such a self-reconstruction property
is critical in practice, especially in applications such as acoustic
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Figure 1 | Schematic illustration of an acoustic bottle beam. After being

emitted from a planar-phased sound source, the sound energy flows

through a three-dimensional curved shell in air leaving a close-to-zero

pressure region in the middle, exhibiting the capability of circumventing

obstacles. Here we assume that the acoustic wave propagates along the z

axis, and the x and y axes are taken as the transverse coordinates. The

evolution of the pressure field displayed at the bottom manifests the self-

bending ability of the acoustic bottle beams to avoid a three-dimensional

space. The dashed arrows indicate the proceeding direction of the

wavefront.
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imaging and therapeutic ultrasound through heavily scattering
and inhomogeneous media.

Acoustic bottle beam and acoustic pulling force. By rotating the
self-bending beam structure, we can create an acoustic bottle
beam, which encloses a region with close-to-zero sound pressure
surrounded by a higher acoustic pressure shell in three dimen-
sions (Fig. 1). We used the discretized speaker array as shown in
Fig. 4a with designed amplitude and phase profile (see Methods).
The measured axial cross-section and transverse beam profiles of
the acoustic field of the bottle beam show that the sound beam
emitted from the planar source creates a transversely localized
forward propagating wave packet before the beam expands into a
ring and follows along a curved path (Fig. 4b–h). Such curved

propagation behaviour of the wave packet can be further con-
firmed and visualized by our full-wave numerical simulations
(Fig. 4i, also see Methods). As a matter of fact, the shape and size
of the three-dimensional bottle can be controlled at ease because
the self-bending trajectory can be engineered to an arbitrary
convex trajectory as demonstrated above. Moreover, if there is an
object residing in the ‘dark’ region of the acoustic bottle, it will
largely remain unperturbed from the acoustic energy, and in
return does not perturb the propagation of the beam. The
dynamics of such behaviours can be clearly visualized in
Supplementary Movie 1. The capability of the acoustic bottle to
circumvent obstacles relies on the interference of the sound
waves. Therefore it relies on the coherence of the acoustic fields in
the medium, which is in stark contrast to the acoustic invisibility
devices relying on the spatially varying medium.

As shown in Supplementary Movie 1, when a rigid object
resides in the acoustic bottle, it experiences a minimal scattering
of acoustic field. When the object is gradually moving out of the
‘dark’ region, the bottle field will be severely disturbed. Such
scattering of the wave field will inevitably give rise to the acoustic
radiation force for confining the objects within the ‘bottle’35. In
fact, radiation-force-based acoustic levitation and tweezers by
conventional acoustic beams have been well studied20,21. To
experimentally test the possibility of trapping via an acoustic
bottle beam, we directly measure the acoustic radiation force
along the axial axis using a rigid ball made of a hard plastic
material (Fig. 5a). When the rigid ball resides in the bottle, the
axial radiation force can be negative, indicating the existence of a
pulling force against the beam propagation direction as well as the
gravity (Fig. 5c). In contrast, when the rigid sphere is out of the
‘dark’ region, a strong pushing force along the propagation
direction is observed. Such a pulling/pushing force is originated
from the scattering of the sphere (see the vicinity of the boundary
indicated by the blue dashed circle in Fig. 5b). The measured
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Figure 2 | Demonstration of a self-bending acoustic beam propagating

along an arbitrary convex trajectory. (a) The predesigned beam trajectory

(red) that follows a cubic Bézier curve as indicated by a varying form curve

rule, where the purple circles mark the four control points of the Bézier

curve, and the blue curves describe the calculated geometric wavefront.

(b) Experimentally measured acoustic intensity distribution of the

generated Bézier self-bending beam following the design in (a), where the

red dashed curve indicates the predesigned trajectory, the grey dashed

curve indicates the propagation direction of the beam; scale bar, 0.1 m.

(c) The transverse acoustic intensity profile taken along the white

vertical arrow in b (crossing the apex of the trajectory), showing a good

agreement between experiment (blue circles) and theory (red curve).

a.u., arbitrary unit.
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Figure 3 | Self-reconstruction of self-bending acoustic beams. Numerical

simulation (a) and experimental measurement (b) demonstrate that the

synthesized self-bending acoustic beam propagating along a cubic Bézier

curve (white dashed line) is capable of reconstructing its beam profile

after the main lobe is blocked by a steel rod (grey disk) in the beam path.

The grey dashed arrow in a indicates the proceeding direction of the

acoustic beam. Scale bar, 0.1 m. a.u., arbitrary unit.
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acoustic radiation force can be numerically calculated by solving
the vector surface integral of the radiation-stress tensor (defined
as the time average of the wave momentum flux) over a surface
enclosing the object (blue dashed circle in Fig. 5b)35. The
theoretical results (red curve) are in good agreement with the
experimental data. The achieved force in our experiment is
relatively weak (BmN) due to the poor speaker efficiency in our
experiment (B0.1% at the maximum electrical power 0.5 W for
each speaker). Much stronger acoustic forces can be expected by
simply employing higher-power acoustic sources to generate
bottle beams for acoustic trapping, imaging and therapeutic
purposes. Note that the acoustic loss in our current experiment is
negligible (B4% per metre). When extending our method into
different environment and frequency ranges where the loss and
inhomogeneity of the medium are much larger, one should take
into account these factors when solving the wave equation.

Discussion
We demonstrated a method of routing acoustic waves along
designed arbitrary curved paths in homogeneous media. This
offers a new degree of freedom for controlling the flow of acoustic

energy at will4–18,36. We further demonstrated an acoustic bottle
beam capable of trapping. Such an approach opens a new avenue
for diffractionless acoustic beam routing37 that is important for
applications such as underwater sonar and ultrasound medical
imaging that need to access the hard-to-reach objects hidden
behind obstacles.

Methods
Theoretical formulation of self-bending acoustic beams. In a lossless and
source-free homogeneous medium, the pressure p of a time-harmonic acoustic
wave is governed by the Helmholtz equation

r2 pþ k2p ¼ 0 ð1Þ

where r2 is the Laplace operator, k¼ 2pf/cs is the wave number, and cs and f
denote the speed and frequency of the sound, respectively. For a one-dimensional
case, assuming that a wave packet propagates in the x–z plane, equation (1)
becomes

@2p
@x2
þ @2p
@z2
þ k2p ¼ 0 ð2Þ

Here we take the x and z as the transverse and longitudinal coordinates,
respectively. Previous studies have shown that self-bending (or self-accelerating)
beams can be found by solving the wave equation (equation (2))23–25. Such a beam,
after being launched from a plane source at a certain position (for example, z¼ 0),
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Figure 4 | Production of an acoustic bottle beam in three dimensions. (a) The speaker array used in our experiment (1.5 cm diameter and with a

radial spacing 2.5 cm). (b–e) Measured acoustic intensity maps of the axial cross-section (b) and the transverse cross sections (c–e) at different

longitudinal positions as marked in b, where the predesigned bottle profile is marked by the red dashed lines. (f–h) The acoustic intensity profiles taken

along the white vertical arrows in c–e (crossing the beam center), respectively, showing a good agreement between experiment (blue circles) and theory

(red line). (i) Numerical simulations of the axial cross-section of the pressure field of the designed acoustic bottle beam, where the dashed arrows

indicate that the sound energy indeed flows through the curved shell of the bottle. The animation of the pressure field of the bottle beam and a comparing

Gaussian beam (Supplementary Movie 1) shows the self-bending dynamics and the capability of circumventing obstacles of the acoustic bottle field.

Scale bar, 0.1 m. a.u., arbitrary unit.
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shall maintain its beam profile and suffer a transverse shift along the x axis while
proceeding in the z direction.

Due to the fact that exact solutions of equation (2) are only available for certain
limited coordinate systems23–25, identifying the self-bending beam along an
arbitrary trajectory is a nontrivial issue. As is well known, the asymptotic theory
provides an efficient way to construct the solution of partial differential
equations26. It has been shown that the solution of equation (2) can be presented in
the form of asymptotic series26,38,39

pðx; zÞ � expðikcðx; zÞÞ
X1
j¼0

Ajðx; zÞ
ðikÞj

; k!1 ð3Þ

where the phase function c and the amplitude functions Aj are complex. By
substituting equation (3) into equation (2), we can find that c satisfies the eikonal
equation of geometrical acoustics39

@c
@x

� �2

þ @c
@z

� �2

¼ 1 ð4Þ

whereas Aj satisfies the recursive system of transport equations

2
@c
@x

@Aj

@x
þ @c
@z

@Aj

@z

� �
þAj

@2c
@x2
þ @2c
@z2

� �
¼ � @2Aj� 1

@x2
þ @2Aj� 1

@z2

� �
ð5Þ

where j¼ 0,1,2,y, and A� 1�0.
The solution of equation (4) describes the geometric wavefront as well as the

rays, which determine the propagation of the amplitude governed by equation (5).
Such decoupled condition offers us the opportunity to construct the rays and the
successive positions of the wavefront without any reference to the amplitude of the
self-bending beams. This can be easily understood in terms of Huygens’ Principle.
Our recipe is to construct a self-bending beam as the asymptotic solution of
equation (2) by finding the wavefront determined by the predesigned trajectory of
the self-bending beam from equation (4), without referencing to the amplitude
distribution. From a mathematical point of view, the field constructed in such a
way is the leading part of the asymptotic expansion of the exact field. Although the
full asymptotic expansion consists of additional terms in the amplitude of the field
on each ray, these terms are much smaller than the first term38,39. This is

equivalent to the approximation made in the ray acoustics theory, from which it
has been shown that quite accurate results can be reached even at a scale that
is close to the sound wavelength39.

As pointed out in previous studies, the self-bending beam represents an
envelope of rays and there exists a singular gradient mapping between the ray
surface (wavefront) and the self-bending beams (caustics)23. As shown in Fig. 6, the
geometric representation of such a condition is that all the rays forming a caustic
are tangents of the caustic trajectory. As the geometric wavefront is always
perpendicular to the rays, one can construct a unique wavefront family from the
tangential rays of the caustic trajectory. Once the wavefront is determined, the
phase map on a planar source plane can be generated by tracing each point on the
wavefront to the source plane along the ray and calculating the phase retardation28.
To formulate our recipe, let us consider a phased array located in x–z plane
emitting acoustic rays according to a certain phase profile j(x), as illustrated in
Fig. 6. During the propagation along the positive z axis, the rays construct a desired
self-bending wave packet at x¼ f(z), where the single-valued function f depicts an
arbitrary convex curve. Next we shall use Legendre transformations to construct
the geometric wavefront from a preset beam trajectory.

Assume that the geometric wavefront W corresponding to an arbitrary convex
beam trajectory S can be described by the parametric curve (u(x,z), v(x,z)). The
Legendre transformation of S can be written as

c ¼ x� zt ð6Þ

t ¼ dx=dz ¼ f 0ðzÞ ð7Þ

From Fig. 6, one can easily derive that

cðtÞ ¼ v� ut ð8Þ

du=dv ¼ � t ð9Þ
Therefore the Legendre transformation of W can be written as

F ¼ u� vðdu=dvÞ ¼ uþ vt ð10Þ

From equations (8) and (10), we obtain

u ¼ ðF� tcÞ=ð1þ t2Þ ð11Þ

v ¼ ðcþ tFÞ=ð1þ t2Þ ð12Þ

By applying inverse Legendre transformation, we can obtain

dF
dt
� t

1þ t2
F ¼ c

1þ t2
ð13Þ

where c is a function of t. Solving equation (13) with the method of variation of
constants, we obtain

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2
p Z

cð1þ t2Þ�
3
2dpþCðz0Þ

� �
ð14Þ

where C(z0) is a fixed constant for a certain S0 at z0. Then from equations (11) and
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Figure 5 | Acoustic pulling force originated from the acoustic bottle

beam. (a) Schematic of the setup used for measuring the acoustic radiation

force with a rigid hard plastic ball. (b) Calculated acoustic intensity of the

bottle beam in the presence of the rigid ball (corresponding to the position

z¼0.383 in c), where the stronger scattering at the bottom indicates

the origination of a pulling force; scale bar, 0.1 m. (c) Experimentally

measured (blue data points) and numerically simulated (red curve)

acoustic radiation forces of the bottle beam at different axial locations,

where the region below the dashed line in c indicates the existence of the

acoustic pulling forces in the opposite direction of the beam propagation

as well as the gravity. The error bar depicts the standard deviation

of our measurement. a.u., arbitrary unit.
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(12), we arrive at

u ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2
p

Z
cð1þ t2Þ�

3
2dtþCðz0Þ

� �
� t

1þ t2
c ð15Þ

v ¼ tffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2
p

Z
cð1þ t2Þ�

3
2dtþCðz0Þ

� �
� 1

1þ t2
c

Considering t¼ f 0(z) and S0 is the intersection point of W and S, equation (15)
turns into

uðzÞ ¼ ðIðzÞþCðz0ÞÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðf 0ðzÞÞ2

q
�ðf 0ðzÞðf ðzÞ� zf 0ðzÞÞÞ=ð1þðf 0ðzÞÞ2Þ

ð16Þ

vðzÞ ¼ ðf 0ðzÞðIðzÞþCðz0ÞÞÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðf 0ðzÞÞ2

q
þðf ðzÞ� zf 0ðzÞÞ=ð1þðf 0ðzÞÞ2Þ

IðzÞ ¼
Z
ððf ðzÞ� zf 0ðzÞÞf 00ðzÞÞ=ð1þðf 0ðzÞÞ2Þ3=2dz

Cðz0Þ ¼ ðz0 þ f 0ðz0Þf ðz0ÞÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðf 0ðz0ÞÞ2

q
� Iðz0Þ

To construct the phase profile for the planar-phased array from the curved
wavefront described by equation (16), one needs to trace each point on a wavefront
along the ray to the plane of phased array and calculate the phase retardation.
This gives the phase profile for creating the acoustic self-accelerating beam along
the predesigned curve f(z), which is determined by the following parametric
equations

x ¼ vþ udu=dv ð17Þ

j ¼ ku= cosðarctanð� du=dvÞÞ
By solving equations (16) and (17) for a given desired beam trajectory, one can
readily construct the phase profile needed for the phase array. Notice that
there is no approximation involved in the above phase profile construction process,
and therefore our recipe remains accurate for highly non-paraxial condition28.

Design of the self-bending Bézier beam. To demonstrate the feasibility of
our recipe for designing acoustic self-bending beams, here we chose a Bézier curve
as a typical example33. A Bézier curve is a parametric curve P(t), which is a
polynomial function of the parameter t. The curve is defined by a set of control
points P0 through Pn, where n is called its order (n¼ 1 for linear, 2 for
quadratic, and so on.). An explicit definition of a Bézier curve of degree n can be
expressed as

PðtÞ ¼
Xn

i¼0

Pi
n !

i ! ðn� iÞ ! tið1� tÞn� i ð0 � t � 1Þ: ð18Þ

In our experiment, we chose a cubic (n¼ 3) Bézier curve, which is defined by
four points P0, P1, P2, P3 and is expressed as a cubic polynomial

PðtÞ ¼ð1� tÞ3P0 þ 3tð1� tÞ2P1 þ 3ð1� tÞt2P2 þ t3P3

¼ð1� tÞ3
0

� 0:2311

� �
þ 3tð1� tÞ2

0:1

0:0189

� �

þ 3ð1� tÞt2 0:25

0:1689

� �
þ t3 0:98

� 0:3311

� � ð19Þ

By substituting equation (19) into equations (16) and (17), we can calculate the
phase profile required for creating acoustic self-bending beams travelling along the
cubic Bézier trajectory, as shown in Fig. 7a. By discretizing the phase profile
according to our speaker arrangement (see Fig. 7b), we can readily obtain the phase
retardation of each speaker (see Fig. 7a). Figure 7c,d depict the numerical
simulations of the generated acoustic pressure field (c) and the intensity
distribution (d) from the phase profile, where the black dashed arrow indicates the
beam propagation direction, whereas the white dashed line denotes the predesigned
trajectory. The pressure field shown in Fig. 7c clearly indicates that the generated
beam indeed propagates along the predesigned Bézier curve. In comparison with
the propagation of a Gaussian beam at similar beam size, the diffraction of the
generated self-bending Bézier beam is largely suppressed. Note that the spacing
between the adjacent speakers in our array (2.5 cm) is larger than half of the sound
wavelength at 10 kHz (B1.72 cm), which will cause the spatial aliasing effect40.
However, our numerical simulations and experimental results show that such an
effect is only observable in the region close to our speaker array and near the edge
of the array.

Construction and modelling of speaker array. In our experiment, the phase and
the amplitude profiles of the acoustic wave emitted from the speaker array (see
Fig. 7b) are controlled by a home-built all-pass filter array and an audio amplifier
array, respectively. A simple first-order all-pass filter can generate a phase delay of
Dj¼ 180�� 2arctan(2pfRC) without changing the amplitude of the signal. Here f
is the signal frequency, R is the control resistor and C is the control capacitor of the
all-pass filter. For each speaker, we used one first-order all-pass filter to achieve a
phase delay from 0� to 180�, or two first-order all-pass filters connected in series to
achieve a phase delay from 180� to 360�. We generated the desired phase delays
(see Fig. 7a) by changing the values of tunable resistors (a typical value: 0–50 kO)
whereas the capacitors possess fixed values (typically at 1 nF). The audio amplifiers
used in the experiment are TDA7052A/AT made by Philips Semiconductors, which
has a maximum output of about 1 W. Numerical simulations of the speaker array
are carried out using the acoustics module of Comsol Multiphysics. In our Comsol
simulation, we use the ‘plane wave’ radiation boundary condition that assigns a
uniform pressure value over the whole area of each speaker. This is equivalent to
approximate the speaker as a superposition of many equally-distributed dipoles,
which represents the experimental system better than a simple monopole or dipole
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approximation34. The pressure amplitude and phase of the source are defined
separately. All the speakers are arranged periodically along one straight boundary,
and all other boundaries are set at the scattering boundary condition.

Methodology of designing and generating acoustic bottle beams. To generate
acoustic bottle beams with different three-dimensional shapes, we circularly wrap
the self-bending beam with respect to the z axis, as illustrated in Fig. 8a. Specifi-
cally, we wrap the self-bending beam with respect to a point (named as a singular
point) residing on the beam trajectory. As such, one can derive an axial symmetric
wavefront according to the one-to-one mapping between the rays and the bottle
boundary in the transverse (critical) plane containing the singular point. Conse-
quently, the phase profile at the critical plane can be obtained with equations (16)
and (17). As indicated from Fig. 8a, to the left beyond the singular point, the one-
to-one mapping will abruptly disappear. Next, we address how to create acoustic
bottle beams from a source that is placed at a certain position located on the
negative z axis beyond the critical plane. Due to the lack of the one-to-one mapping
from bottle structure to the phase map, one has to involve modulations in both
amplitude and the phase. Suppose the source is placed at z¼ � z0, the required
phase and amplitude can be deduced from the phase map at the critical plane via a
backward propagating process. By employing the angular spectrum theory, the
back propagation of an acoustic field p(x,0) can be described by41

pðx; � z0Þ ¼ F � 1ðFðpðx; 0ÞÞ expð� iz0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2f 2=c2

s � k2
x

q
ÞÞ ð20Þ

where F{} and F� 1{} represent Fourier transform and inversed Fourier transform,
respectively.

Figure 8b–d show an example of the back propagation procedure for generating
a bottle beam by wrapping up a self-bending beam with respect to the origin
(x¼ z¼ 0). The circular trajectory of the self-bending beam is described by

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0043�ðz� 0:0648Þ2

q
� 0:0095. Figure 8b displays the phase map at the

critical plane constructed from equations (16) and (17). The amplitude and phase
profile obtained by the backward propagation for generating bottle beams from a
planar source (located at z¼ � 0.36) are shown in Fig. 8c,d, respectively. The axial
intensity cross-section of the generated bottle beam from numerical simulation is
displayed in Fig. 8e, from which it can be seen that the generated bottle beam
matches the initial design well. As it can be seen, inside the bottle there is no sound
energy. This means if we put any obstacle inside the bottle, it would not influence
the beam propagation at all. Such a behaviour is clearly illustrated in
Supplementary Movie 1.

To experimentally generate the bottom beam shown in Fig. 8, we utilize the
speaker arrangement as shown in Fig. 9a. The required amplitude and phase
modulation for the axial symmetrically arranged speakers are plotted in Fig. 9b.
The amplitude profile shown in Fig. 9b was calculated on the basis of the
assumption that the speakers were distributed uniformly. In the experiment, the
spacing of speakers increases along the azimuth direction. So we set the amplitude
of each speaker equal to the calculated amplitude shown in Fig. 9b multiplied by a
factor that is proportional to the radius of the circle where the speaker is located.

The numerical simulations with such an arrangement are shown in Fig. 9c–f, from
which we can clearly see that a bottle structure has been successfully generated.

Acoustic field mapping method. All experiments are conducted with a system
similar to the one used in our previous work under room temperature inside a large
room to isolate the ambient noise and air flow42. The generated acoustic fields from
the speaker arrays are mapped by measuring the sound pressure amplitude with a
4-mm diameter PUI Audio TOM-1045S-C33-R microphone. Under our
measurement condition, the acoustic intensity map can be derived from the
pressure measurement by I¼ p2/Z0¼ p2/413, where a purely real acoustic
impedance of air Z0¼ 413 N s m� 3 is used by assuming that the sound pressure
and particle velocity are in phase within our measured region. To minimize the
field perturbations from the measurement, the microphone is attached to a thin
metal holder, which is mounted onto a three-dimensional motor controlled
scanning system and runs in a zigzag way to cover the whole field. All the measured
data were sent to a computer through Tektronix TDS2002B digital storage
oscilloscope for further processing. Both three-dimensional motor controlled
scanning system and TDS2002B were controlled by LabVIEW software.

Characterization of acoustic radiation force. The radiation force exerted on an
object by a continuous-wave surface acoustic wave can be obtained by solving the
vector surface integral of the radiation-stress tensor (defined as the time average of
the wave momentum flux) over a surface enclosing the object35. Within the
second-order approximation, the acoustic radiation force can be governed by35,43

F¼
ZZ

S

rðv � vÞ
2

� p2

2rc2
S

� �
n�rðv � nÞv

� �
dS ð21Þ

where S is a fixed surface enclosing the object, r and cs are the fluid density and
speed of sound, p and v are the acoustic pressure and particle velocity, n is the
outward normal to the surface S, dS is the elementary surface element, and the
angular bracket o �4 denotes the time average. To quantify the radiation force of
the acoustic bottle beams exerted on an object, we performed numerical simulation
with the acoustics module of Comsol Multiphysics. By placing the object at
different locations in the acoustic field and choosing S to be the boundary surface
of the object, the acoustic field under perturbation of the object was first simulated
with Comsol, and then the acoustic radiation force was calculated according to
equation (21).

To experimentally measure the acoustic radiation force of the bottle beam
exerting on an object, the speaker array emitting a downward propagating beam is
placed on the top. The force is probed in air by a rigid ball made of hard plastics
(6.5 cm in diameter). The rigid ball is supported by a very thin rigid rod (1 mm in
diameter), which is connected to a digital analytical scale with a reading accuracy of
0.01 mg. By measuring the weight difference in the presence and absence of the
acoustic field at different locations, the acoustic radiation force of the bottle field
can be mapped out. We repeated the measurement many times by turning on and
off the acoustic source about every 30 seconds, and then took the average of the
results to increase the accuracy of the measurement. The setup was placed in a
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sealed box to avoid air turbulence, and the walls of the box were covered by foam to
reduce the sound reflection. To prevent the acoustic wave directly hitting on the
analytical scale, we utilized a very long thin rod for connecting the rigid ball and
covered the analytical scale with a plate and foam. The relative longitudinal
position between the two-dimensional speaker array and the analytical scale are
precisely adjusted by a vertical translation system.
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