报告时间:2016年11月1日(周二)下午14:30
报告地点:科技创新大楼C501室
报告题目:Phase Transitions and Transformations in Metal-Organic Framework Materials
安东尼·奇塔姆(Anthony K. Cheetham)教授简介
安东尼·奇塔姆(Anthony K. Cheetham)教授,英国剑桥大学材料科学与冶金系,世界著名的材料化学家,在新型无机和杂化材料的设计合成、结构表征以及应用探索等方面取得了一系列突出成果。迄今,他已发表SCI论文625篇,被引用29,000余次,h因子84。Cheetham教授获得过大量的国际奖项,并当选欧洲科学院院士、德国国家科学院院士、德国国家科学与工程科学院院士、美国艺术与科学院院士以及其他国际院士荣誉。 同时他还是第三世界科学院院士,曾担任化学选举委员会和评奖委员会主席以及未来战略和计划委员会成员。自2010年以来,Cheetham教授一直担任英国皇家学会委员会委员,并于2012年当选为副主席和财务官。
Phase Transitions and Transformations in Metal-Organic Framework Materials
Anthony K. Cheetham
Department of Materials Science and Metallurgy
University of Cambridge
Cambridge CB2 3QZ
Our current research on metal-organic frameworks (MOFs) focuses primarily on their physical properties, including their remarkable mechanical, optical, magnetic, ferroelectric and electronic behaviour. We have worked extensively on the amorphization of MOFs, which can be induced thermally, under pressure, or by milling [1]. In certain cases we have been able to form glassy MOFs by quenching of the molten state [2]. I shall discuss several cases of phase transitions that depend heavily on framework flexibility. These include the transition from a porous to a dense framework at 160K in the Zeolitic Imidazolate Framework, ZIF-4, which is accompanied by a decrease in volume of ~23% [3]. A second example involves a reversible, pressure-induced phase transition in a dense rare-earth formate, which shows the breaking and making of bonds during a transition that is accompanied by a 10% change in volume [4]. In addition, we shall explore chemical transformations that depend on flexibility. These include the topochemical dehalogenation of a copper trithiocyanurate framework that is accompanied by a change from an insulating crystalline phase to an amorphous semiconductor [5], an insulator to proton conductor transition that is driven by hydration [6], and an in situ study of the successive crystallization of MOFs with increasing stability [7]. Finally, a brief summary of some of our recent work on hybrid perovskites will also be presented [8].
1. T. D. Bennett and A. K. Cheetham, Accounts of Chemical Research 47, 1555 (2014)
2. T. D. Bennett, J. C. Tan, Y. Z. Yue, C. Ducati, N. Terrill, H.H.M. Yeung, Z. Zhou, S. Henke, A. K. Cheetham and G. N. Greaves, Nature Comm. 6, 8079 (2015)
3. M. T. Wharmby, S. Henke, T. D. Bennett, Y. Yue, C. Mellot-Draznieks, and A. K. Cheetham, Angew. Chem. Intl. Ed. 54, 6447 (2015)
4. E. C. Spencer, M. S. R. N. Kiran, Wei Li, U. Ramamurty, N. L. Ross and A. K. Cheetham, Angew. Chem. Intl. Ed. 53, 5583 (2014)
5. S. Tominaka, T. Suga, T. D. Bennett and A. K. Cheetham, Chem. Sci. 6, 1465 (2015)
6. S. Tominaka, F. X. Coudert, T. D. Dao, T. Nagao and A. K. Cheetham, J. Amer. Chem. Soc. 137, 6428 (2015)
7. H.H.M. Yeung, Y. Wu, S. Henke, A. K. Cheetham, D. O’Hare and R. I. Walton, Angew. Chem. Intl. Ed. Eng. 55, 2012 (2016)
8. S. Sun, S. Tominaka, J.-H. Lee, S. F. Xie, P. D. Bristowe and A. K. Cheetham, APL Materials, 4, 031101 (2016); F. Wei, Z. Deng, S. Sun, F. Xie, G. Kieslich, D. M. Evans, M. A. Carpenter, P. D Bristowe and A. K. Cheetham, Materials Horizons 3, 328 (2016); Z. Deng, F. X. Wei, S. Sun, G. Kieslich, A. K. Cheetham and P. D. Bristowe, J. Mater. Chem. A 4, 12025 (2016)