English|NanjingTech|Contact
IAM星火大讲堂
科研信息
院务公告
学生事务
专题讲座
学术会议
IAM星火大讲堂

IAM星火大讲堂第21期:南非国家科学院院士、南非SARChI计划绿色氢能首席科学家、美国机械工程学会会士、南非约翰内斯堡大学Tien-Chien Jen教授
添加时间:2023/05/21 发布:
二维码

扫描二维码,在手机中查看。

[2023科技创新月]


报告时间:2023年5月25日(星期四)9:00
报告地点:科技D楼1903会议室

报 告 人:Tien-Chien Jen(任天健)院士

邀 请 人:陈永华 教授

报告题目:Atomic Layer Deposition from Pursuit of Nano Precision to Energy Storage: Recent Advances and Future Prospects


报告摘要:


Atomic Layer Deposition from Pursuit of Nano Precision to Energy Storage: Recent Advances and Future Prospects

Tien-Chien Jena*

aDepartment of Mechanical Engineering Science, University of Johannesburg, Johannesburg, Auckland Park 2006, South Africa


Nanotechnology fabrication has become a popular field in the development of advanced and cutting-edge technologies. Deposition processes are industrialized to achieve nano-thin films that are accompanied by some exceptional attributes to meet the requirements for the manufacture of components with desired durability, efficiency and performance. The industry, however, is in constant pursuit to optimize and make the Nano-manufacturing process economically prudent. The research endeavour within nanotechnology fabrication and the implications of smart factories are studied by the collaboration of Prof. TC Jen and his team of researchers. The team continually fathom and strives to refine the knowledge of the Nano-fabrication processes and the incorporation of advanced manufacturing techniques into the realization of smart factories. This keynote reports on the current findings of numerous research endeavours. This includes an in-depth study of atomic layer depositions (ALD) and their unique behaviours and optimization requirements towards their operations and dependency on geometrical designs. These approaches utilize numerical methods, such as computational fluid dynamics, lattice Boltzmann, density function theory, and molecular dynamics to describe the Nano-precision attributes of the film products during the fabrication process.

Batteries, supercapacitors, and hydrogen storage are just a few examples of energy storage technologies that have been effective in reducing the use of fossil fuels, addressing environmental concerns, and facilitating the growth of the electric vehicle industry. To achieve the highest efficiency for the various energy-related devices, the manufacturing and interface/surface engineering of electrode materials with optimized architectures is essential. Atomic layer deposition (ALD) is an effective coating technique for the fabrication of high-quality and uniform thin films and precise material growths at the nanometre scale. This keynote focused on the recent advancements and future prospects of ALD in energy storage systems. The overview outlined the fundamentals of the ALD process, and features and highlights a brief survey on the current status of ALD. The potential of ALD in designing and fabricating active components of batteries including cathodes, anodes, solid-state electrolytes, 2D materials for hydrogen storage, and other novel compounds for energy storage applications is highlighted. A further capability of ALD in tailoring the electronic and morphology of battery compounds and engineering the interface layers to enhance their performance including energy capacity, cycling, safety, lifetime and were discussed.

The challenges faced in device optimization, including improving the efficiency, stability, and scalability of the devices are also discussed. The prospects of ALD in thin film batteries, including the development of new materials and the integration of ALD with other techniques are also discussed. This keynote is of interest to researchers and professionals working in the fields of Li batteries, thin film fabrication, and device design.

Keywords: ALD, ultra-thin film deposition, Energy storage, latest advancement



个人简介:

Prof. Tien-Chien Jen joined University of Johannesburg on August 2015, before that Prof. Jen was a faculty member at University of Wisconsin, Milwaukee. Prof. Jen received his Ph.D. in Mechanical and Aerospace Engineering from UCLA, specializing in thermal aspects of grinding. He has received several competitive grants for his research, including those from the Sasol-NRF South Africa Research Chair (SARChI), the US National Science Foundation, the US Department of Energy and the EPA. Prof. Jen was appointed as the South Africa Research Chair (SARChI) Chair of Green Hydrogen in 2023, elected to the Academician of the Academy of Science of South Africa in 2020, elected to the status of American Society of Mechanical Engineers (ASME) Fellow in 2011. He is also the Director of Atomic Layer Deposition Research Center, the Director of Manufacturing Research Centre of the University of Johannesburg.

Professor Jen has written over 450 peer-reviewed papers including over 250 peer-reviewed journal papers, published in Elsevier, ACS, Taylor and Francis, Springer Nature, Wiley, MDPI, etc. Some of the journals include: Electrochemical Energy review, Nano-Micro Letters, Coordination Chemistry Reviews, Nanotechnology Review, Journal of Molecular Liquids, Journal of Materials Research and Technology, Scientific Reports, International Journal of Heat and Mass Transfer, ASME Journal of Heat Transfer, ASME Journal of Mechanical Design and ASME Journal of Manufacturing Science and Engineering etc. He has written 22 book chapters and has 6 books published with the latest titled “Thin Film Coatings: Properties, Deposition, and Applications,” published by CRC press-Taylor Francis, June 2022.

Copyright © 2017-2019 新利18彩票 先进材料研究院 All rights reserved.

官方微信
地址:南京市新模范马路5号138信箱总共访问:[旧版回顾]
电话: 025-83587982
Baidu