当前位置: 网站首页> 实验室概况> 研究方向> 正文
材料的化学工程应用
阅读次数:发布时间:2017-03-28

研究方向三:材料的化学工程应用

思路是紧密围绕国家中长期科学与技术发展规划,面向缓解过程工业的资源、能源和环境瓶颈问题的重大需求,以开发的新型材料为基础,研究新型分离技术、新反应技术以及过程集成技术,形成具有自主知识产权、对国民经济有重大影响的标志性成果,实现理论研究对国民经济和社会发展的直接贡献。在方向选择上,围绕节能减排的具体目标,重点发展以膜材料、吸附等新材料为基础的新型分离技术;以生物材料、膜材料、催化材料等新材料为基础的新型反应技术;以新材料为基础的过程集成技术及相关的基础研究,主要集中在反应-膜分离耦合、膜催化反应器、微化工反应过程等集成技术的应用基础研究。拟开展如下研究工作:

1)基于材料的分离过程研究

发展以新材料为基础的新型分离技术,具有节约能源的特征。本实验室以新材料如膜材料、新型吸附材料等为基础发展起来的新型分离技术,如膜分离、吸附分离等,在分离过程中一般不产生相的变化,因此具有节约能源的特征,发展十分迅速,成为分离领域的主要发展方向。主要包括基于膜材料,开展膜法污水处理技术研究及工程应用研究,在钢铁等行业实现规模应用,重点研究污水中污染物成分对膜和膜污染过程的影响及机理、膜的有机和生物污染模型的建立、性能优越的新型分离膜材料(尤其是抗污染膜)的设计与开发、新型膜组件的开发、膜组件清洗技术开发等;提出采用透醇膜渗透汽化过程与乙醇发酵过程相耦合的膜生物反应器集成过程,并与透水膜渗透汽化流程相结合,形成连续制备无水乙醇的新工艺;膜分离技术与生物质衍生物水相重整制氢耦合研究,开发出小型生物质制氢装置,推动氢能源的普及应用,并有针对性地对膜法氢分离金属膜材料和制氢与膜分离集成过程展开研究,在膜组件装配、高温密封技术、制氢与膜分离集成方式以及操作工艺等对分离效率及膜的稳定性影响等方面开展工作,为透氢金属膜的评价和使用提供测试分析平台,为氢能源的工业化应用提供技术和理论基础;基于新型吸附材料,对吸附分离过程进行研究,进一步探明多孔吸附材料微结构和表面化学性质对吸附性能影响规律,针对常规吸附剂无法分离的体系,开发出具有自主知识产权、技术性能国内外领先的新型吸附剂和吸附过程并实现工业化,为气体能源储存、大气污染治理等提供技术支撑;面向传统产业提升气体净化技术水平,推广应用新型吸附分离过程,推动吸附过程的工业应用。

2)基于材料的反应过程研究

以新材料为基础的反应技术正在改变着化工与石油化工的面貌,发展以新材料为基础的反应技术,具有绿色、高效等特征。本实验室以新材料如生物材料、膜材料、催化材料等为基础发展起来的新型反应技术,对传统的反应过程的技术进步具有重要的促进作用。主要包括基于生物材料的反应过程研究,开展丙交酯的开环聚合研究,设计并合成新型开环聚合引发剂/催化剂,研究引发剂的结构与功能关系,以期获得高效引发剂,在较短时间完成丙交酯聚合并达到较高分子量,用一步聚合代替现有的两步法聚合;以发酵得到的丁二酸为原料,开展生物可降解材料PBS及其共聚、共混材料的合成研究;基于环境友好催化材料的催化反应过程研究,通过分析催化过程对催化材料的结构和组成的要求,研究基于新催化剂的催化过程研究。重点研究ZSM-5、MCM-22等沸石分子筛催化材料以及以其为活性组分的催化剂,SBA-15等介孔分子筛为载体的催化剂,杂多酸为活性组分的催化剂等;并研究以甲苯择形歧化为代表的择形催化过程,以苯的羟基化为代表的芳烃定向氧化过程,以酯化和缩合反应为代表的精细化工过程等;研究可用于清洁燃油生产、化学品绿色合成的固体强酸催化材料催化应用研究、固体强酸催化烷烃临氢异构化技术的中试研究;基于膜材料,研究固体氧化物燃料电池及新型动力电池,通过新材料的开发制备及基础研究,实现以直接碳氢化合物为燃料的低温固体氧化物燃料电池技术,千瓦级的管式燃料电池技术;前端聚合反应工程,研究内容包括前端聚合反应的化学反应动力学、化学反应热力学、化工传递过程规律。特别研究反应热量的产生和传递等因素及分歧参数对聚合物前端运动形式的影响,找出热传递和对流传导对前端不稳定性影响的关键因素以及影响前端聚合反应工艺的诸因素,建立其动力学方程。

3)基于材料的反应分离耦合过程研究

开展以新材料为基础的过程集成技术及相关的基础研究,可以提高生产效率,使单位产品能耗更低、资源利用率更高、“三废”更少。本实验室主要通过对反应-膜分离耦合、膜催化反应器、微化工反应过程等集成技术的研究,形成特色与优势研究方向,服务于国民经济建设。主要包括反应-膜分离耦合过程,以提高传统反应过程的资源利用率为目标,开展反应-膜分离耦合过程的基础与应用研究,主要研究内容是反应过程与膜分离过程的匹配关系、耦合过程的流体力学、反应动力学、耦合过程的模型化、耦合过程中膜结构演变规律以及膜污染与再生、耦合过程中膜组件的大型化、标准化设计以及在线清洗技术,预期形成自主知识产权的反应-膜分离耦合技术,建立万吨级的反应-膜分离耦合示范装置;微反应过程研究,利用新型的微反应器开发新的纳米颗粒合成与反应过程新工艺,特别是针对强吸热和防热反应、两相互不相溶体系、传质控制的反应等开展研究工作,以期开发新的快速安全高效的微反应过程,以新型的节段流形式连续合成纳米无机材料和沸石分子筛,达到连续快速尺寸可控的纳米材料合成新技术。


Baidu